Wednesday 18 January 2017

Moving Average Noise Reduction

Die Wissenschaftler und Ingenieure Leitfaden für digitale Signalverarbeitung Von Steven W. Smith, Ph. D. Kapitel 15: Verschieben von Durchschnittsfiltern Rauschreduzierung und Schrittreaktion Viele Wissenschaftler und Ingenieure fühlen sich schuldig, wenn Sie den gleitenden Mittelfilter verwenden. Weil es so einfach ist, ist der gleitende Durchschnitt Filter oft das erste, was versucht, wenn mit einem Problem konfrontiert. Auch wenn das Problem vollständig gelöst ist, gibt es immer noch das Gefühl, dass etwas mehr getan werden sollte. Diese Situation ist wirklich ironisch. Nicht nur ist der gleitende durchschnittliche Filter sehr gut für viele Anwendungen, er ist für ein allgemeines Problem optimal und verringert zufälliges weißes Rauschen, während es die schärfste Schrittantwort hält. Abbildung 15-1 zeigt ein Beispiel dafür, wie dies funktioniert. Das Signal in (a) ist ein in zufälligem Rauschen vergrabener Impuls. In (b) und (c) verringert die Glättungswirkung des gleitenden Durchschnittsfilters die Amplitude des zufälligen Rauschens (gut), verringert aber auch die Schärfe der Kanten (schlecht). Von allen möglichen linearen Filtern, die verwendet werden könnten, erzeugt der gleitende Durchschnitt das niedrigste Rauschen für eine gegebene Flankenschärfe. Der Betrag der Rauschunterdrückung ist gleich der Quadratwurzel der Anzahl der Punkte im Durchschnitt. Zum Beispiel verringert ein 100-Punkte-gleitender Durchschnittsfilter das Rauschen um den Faktor 10. Um zu verstehen, warum der gleitende Durchschnitt die beste Lösung ist, stellen wir uns vor, wir wollen einen Filter mit fester Kantenschärfe entwerfen. Nehmen wir zum Beispiel an, dass wir die Kantenschärfe festlegen, indem wir angeben, dass es elf Punkte im Anstieg der Sprungantwort gibt. Dies setzt voraus, dass der Filterkern elf Punkte hat. Die Optimierungsfrage lautet: Wie wählen wir die elf Werte im Filterkernel aus, um das Rauschen am Ausgangssignal zu minimieren Da das Rauschen, das wir reduzieren wollen, zufällig ist, ist keiner der Eingangspunkte etwas Besonderes, jeder ist genauso laut wie sein Nachbar . Daher ist es nutzlos, irgendeinem der Eingangspunkte eine bevorzugte Behandlung zu geben, indem ihm ein größerer Koeffizient im Filterkern zugewiesen wird. Das niedrigste Rauschen wird erhalten, wenn alle Eingangsabtastwerte gleich behandelt werden, d. h. das gleitende Mittelfilter. (Später in diesem Kapitel zeigen wir, dass andere Filter im Wesentlichen so gut sind. Der Punkt ist, kein Filter ist besser als die einfachen gleitenden Durchschnitt). Ein genauer Blick auf die erweiterte CODAS Moving Average Algorithmus Vielseitig gleitenden Durchschnitt in Advanced CODAS-Algorithmus filtert Wellenformrauschen , Extrahiert Mittelwert und eliminiert Baseline Drift. Der gleitende Durchschnitt ist eine einfache mathematische Technik, die primär zur Beseitigung von Aberrationen verwendet wird und den tatsächlichen Trend in einer Sammlung von Datenpunkten offenbart. Sie könnten mit ihm aus der Mittelung lärmender Daten in einem Neuling Physik-Experiment oder aus der Verfolgung der Wert einer Investition vertraut sein. Sie wissen vielleicht nicht, dass der gleitende Durchschnitt auch ein Prototyp des endlichen Impulsantwortfilters ist, der häufigste Filtertyp, der in der computerbasierten Instrumentierung verwendet wird. In Fällen, in denen eine gegebene Wellenform mit Rauschen überlagert ist, wo ein Mittel aus einem periodischen Signal extrahiert werden muss oder wo eine langsam driftende Grundlinie aus einem Signal höherer Frequenz eliminiert werden muss, kann ein gleitender Durchschnittsfilter angewendet werden, um das gewünschte zu erzielen Ergebnis. Der gleitende Durchschnittsalgorithmus von Advanced CODAS bietet diese Art der Wellenformfilterleistung. Advanced CODAS ist ein Analyse-Softwarepaket, das auf vorhandenen Wellenformdateien arbeitet, die von WinDaq oder WinDaq-Datenerfassungspaketen der zweiten Generation erstellt wurden. Zusätzlich zu dem gleitenden durchschnittlichen Algorithmus enthält Advanced CODAS auch ein Berichtsgenerator-Dienstprogramm und Software-Routinen für Wellenformintegration, Differenzierung, Peak - und Tal-Erfassung, Rektifikation und arithmetische Operationen. Moving Average Filter Theorie DATAQ Instruments Moving Average Algorithmus ermöglicht eine große Flexibilität in Wellenform-Filter-Anwendungen. Es kann als Tiefpaßfilter verwendet werden, um das Rauschen, das bei vielen Arten von Wellenformen anliegt, oder als Hochpaßfilter zu dämpfen, um eine Drift-Grundlinie von einem Signal höherer Frequenz zu eliminieren. Das Verfahren, das von dem Algorithmus verwendet wird, um die Filtermenge zu bestimmen, beinhaltet die Verwendung eines Glättungsfaktors. Dieser Glättungsfaktor, der von Ihnen durch die Software gesteuert wird, kann erhöht oder verringert werden, um die Anzahl der tatsächlichen Wellenformdatenpunkte oder Abtastwerte anzugeben, die der gleitende Durchschnitt überspannt. Jede periodische Wellenform kann als eine lange Zeichenkette oder Sammlung von Datenpunkten gedacht werden. Der Algorithmus führt einen gleitenden Durchschnitt durch, indem er zwei oder mehr dieser Datenpunkte aus der erfassten Wellenform abgibt, addiert, ihre Summe durch die Gesamtanzahl der hinzugefügten Datenpunkte dividiert und den ersten Datenpunkt der Wellenform durch den gerade berechneten Durchschnitt ersetzt Wiederholen der Schritte mit den zweiten, dritten und so weiter Datenpunkten, bis das Ende der Daten erreicht ist. Das Ergebnis ist eine zweite oder erzeugte Wellenform, die aus den gemittelten Daten besteht und die gleiche Anzahl von Punkten wie die ursprüngliche Wellenform aufweist. Abbildung 1 8212 Jede periodische Wellenform kann als eine lange Zeichenkette oder Sammlung von Datenpunkten gedacht werden. In der obigen Darstellung werden konsekutive Wellenformdatenpunkte durch quotyquot dargestellt, um zu veranschaulichen, wie der gleitende Durchschnitt berechnet wird. In diesem Fall wurde ein Glättungsfaktor von drei angewandt, was bedeutet, dass drei aufeinander folgende Datenpunkte aus der ursprünglichen Wellenform hinzugefügt werden, wobei ihre Summe durch drei geteilt wird, und dann wird dieser Quotient als der erste Datenpunkt einer erzeugten Wellenform aufgetragen. Der Vorgang wiederholt sich mit den zweiten, dritten und anderen Datenpunkten der ursprünglichen Wellenform, bis das Ende der Daten erreicht ist. Eine spezielle Quotientierquot-Technik misst die Anfangs - und Enddatenpunkte der ursprünglichen Wellenform, um sicherzustellen, dass die erzeugte Wellenform die gleiche Anzahl von Datenpunkten wie die Vorlage enthält. Fig. 1 zeigt, wie der gleitende Mittelalgorithmus auf Wellenformdatenpunkte (die durch y dargestellt werden) angewendet wird. Die Abbildung zeigt einen Glättungsfaktor von 3, was bedeutet, dass der Durchschnittswert (dargestellt durch a) über 3 aufeinanderfolgende Wellenformdatenwerte berechnet wird. Beachten Sie die Überlappung, die in den gleitenden Durchschnittsberechnungen vorhanden ist. Es ist diese überlappende Technik, zusammen mit einer speziellen Anfangs - und Endpunktbehandlung, die die gleiche Anzahl von Datenpunkten in der gemittelten Wellenform erzeugt, wie sie im Original existiert. Die Art und Weise, wie der Algorithmus einen gleitenden Durchschnitt berechnet, verdient einen genaueren Blick und kann an einem Beispiel veranschaulicht werden. Sagen wir haben auf einer Diät für zwei Wochen und wir wollen unser durchschnittliches Gewicht in den letzten 7 Tagen zu berechnen. Wir würden unser Gewicht an Tag 7 mit unserem Gewicht an den Tagen 8, 9, 10, 11, 12 und 13 summieren und dann mit 17 multiplizieren. Um das Verfahren zu formalisieren, kann dies folgendermaßen ausgedrückt werden: a (7) 7) y (8) y (9) y (13) Diese Gleichung kann weiter verallgemeinert werden. Der gleitende Mittelwert einer Wellenform kann folgendermaßen berechnet werden: wobei: ein gemittelter Wert n Datenpunktposition s Glättungsfaktor y aktueller Datenpunktwert Bild 2 8212 Die Ausgangswellenform der Kraftmesszelle, die im oberen Kanal als Original und ungefiltert dargestellt ist, und als ein 11-Punkt Gemittelte Wellenform im unteren Kanal. Das Rauschen, das auf der ursprünglichen Wellenform auftritt, war auf die intensiven Vibrationen zurückzuführen, die durch die Presse während des Verpackungsvorgangs erzeugt wurden. Der Schlüssel zu dieser Algorithmenflexibilität ist sein breites Spektrum an auswählbaren Glättungsfaktoren (von 2 - 1.000). Der Glättungsfaktor bestimmt, wie viele tatsächliche Datenpunkte oder Proben gemittelt werden sollen. Das Angeben eines positiven Glättungsfaktors simuliert einen Tiefpaßfilter, während ein negativer Glättungsfaktor ein Hochpassfilter simuliert. Bei dem Absolutwert des Glättungsfaktors gelten bei höheren Werten grßere Glättungsbeschränkungen für die resultierende Wellenform und umgekehrt niedrigere Werte weniger Glättung. Mit der Anwendung des geeigneten Glättungsfaktors kann der Algorithmus auch verwendet werden, um den Mittelwert einer gegebenen periodischen Wellenform zu extrahieren. Ein höherer positiver Glättungsfaktor wird typischerweise angewendet, um mittlere Wellenformwerte zu erzeugen. Anwenden des Moving Average Algorithmus Ein herausragendes Merkmal des gleitenden Durchschnittsalgorithmus ist, dass es viele Male auf die gleiche Wellenform angewendet werden kann, um das gewünschte Filterergebnis zu erhalten. Waveform-Filterung ist eine sehr subjektive Übung. Was möglicherweise eine richtig gefilterte Wellenform zu einem Benutzer sein kann, kann unannehmbar laut zu einem anderen sein. Nur Sie können beurteilen, ob die Anzahl der gemittelten Punkte zu hoch, zu niedrig oder genau richtig gewählt wurde. Die Flexibilität des Algorithmus ermöglicht es Ihnen, den Glättungsfaktor anzupassen und einen weiteren Durchlauf durch den Algorithmus durchzuführen, wenn mit dem anfänglichen Versuch keine zufriedenstellenden Ergebnisse erzielt werden. Die Anwendung und die Fähigkeiten des gleitenden Durchschnittsalgorithmus können am besten durch die folgenden Beispiele veranschaulicht werden. Abbildung 3 8212 Die EKG-Wellenform, die ursprünglich und ungefiltert im oberen Kanal und als 97-Punkt-gemittelte Wellenform im unteren Kanal angezeigt wurde. Beachten Sie die Abwesenheit von Baseline Drift im unteren Kanal. Beide Wellenformen werden in einem komprimierten Zustand für Präsentationszwecke gezeigt. Eine Rauschunterdrückungsanwendung In Fällen, in denen eine gegebene Wellenform mit Rauschen überladen ist, kann das gleitende Durchschnittsfilter angewendet werden, um das Rauschen zu unterdrücken und ein klareres Bild der Wellenform zu liefern. Zum Beispiel benutzte ein fortgeschrittener CODAS-Kunde eine Presse und eine Wägezelle in einem Verpackungsbetrieb. Ihr Produkt sollte auf ein vorbestimmtes Niveau (überwacht durch die Kraftmesszelle) komprimiert werden, um die Größe der Verpackung zu reduzieren, die erforderlich ist, um das Produkt aufzunehmen. Aus Qualitätskontrollgründen beschlossen sie, den Pressenbetrieb mit Instrumentierung zu überwachen. Ein unerwartetes Problem trat auf, als sie begannen, die Echtzeit-Wägezellenausgabe anzuzeigen. Da die Pressenmaschine während des Betriebs beträchtlich vibrierte, war die Ausgangswellenform der Lastzellen schwierig zu unterscheiden, da sie eine große Menge an Rauschen aufgrund der Schwingung aufwies, wie dies in dem oberen Kanal von Fig. 2 gezeigt ist. Dieses Rauschen wurde eliminiert, indem ein 11-Punkt-gemittelter Kanal erzeugt wurde, wie in dem unteren Kanal von Fig. 2 gezeigt. Das Ergebnis war ein deutlich deutlicheres Bild der Wägezellenausgabe. Eine Anwendung bei der Beseitigung von Baseline Drift In Fällen, in denen eine langsam driftende Grundlinie aus einem Signal mit höherer Frequenz entfernt werden muss, kann das gleitende Durchschnittsfilter angewendet werden, um die Drift-Baseline zu eliminieren. Beispielsweise weist eine EKG-Wellenform typischerweise einen gewissen Grad an Grundlinienwanderung auf, wie in dem oberen Kanal von 3 zu sehen ist. Diese Grundliniendrift kann eliminiert werden, ohne die Eigenschaften der Wellenform zu verändern oder zu stören, wie in dem unteren Kanal von Fig. 3 gezeigt. Dies wird durch Anwenden eines geeigneten negativen Glättungsfaktors während der gleitenden Durchschnittsberechnung erreicht. Der geeignete Glättungsfaktor wird durch Dividieren einer Wellenformperiode (in Sekunden) durch das Abtastintervall der Kanäle bestimmt. Das Abtastintervall der Kanäle ist einfach der Reziprokwert der Abtastrate der Kanäle und wird bequem auf dem gleitenden Durchschnitts-Utility-Menü angezeigt. Die Wellenformperiode kann leicht aus dem Anzeigebildschirm bestimmt werden, indem der Cursor an einem geeigneten Punkt auf der Wellenform positioniert, eine Zeitmarke eingestellt und dann der Cursor einen vollständigen Zyklus von der angezeigten Zeitmarke weg bewegt wird. Die Zeitdifferenz zwischen Cursor und Zeitmarke ist eine Wellenformperiode und wird am unteren Rand des Bildschirms in Sekunden angezeigt. In unserem EKG-Beispiel besaß die Wellenform ein Kanalabtastintervall von 0,004 Sekunden (erhalten aus dem gleitenden mittleren Utility-Menü) und eine Wellenformperiode wurde gemessen, um 0,388 Sekunden zu überspannen. Das Dividieren der Wellenformperiode durch das Abtastintervall der Kanäle lieferte einen Glättungsfaktor von 97. Da es sich um die Grundliniendrift handelt, die wir an der Eliminierung interessieren, haben wir einen negativen Glättungsfaktor (-97) auf den gleitenden Durchschnittsalgorithmus angewendet. Dies subtrahierte das gleitende Durchschnittsergebnis des ursprünglichen Wellenformsignals, das die Grundliniendrift ohne störende Wellenforminformation eliminierte. Other Waveform Moving Average Issues Unabhängig von der Anwendung ist der universelle Grund für die Anwendung eines gleitenden mittleren Filters auf Quotsmooth outquot die hohen und niedrigen Aberrationen und zeigen einen repräsentativeren Zwischen-Wellenformwert. Dabei sollte die Software bei der Erzeugung einer gleitenden gemittelten Wellenform nicht andere Merkmale der ursprünglichen Wellenform beeinträchtigen. Beispielsweise sollte die Software automatisch die mit der ursprünglichen Datendatei verknüpften Kalibrierungsinformationen einstellen, so dass sich die gleitende gemittelte Wellenform in den geeigneten technischen Einheiten befindet, wenn sie erzeugt werden. Alle Messwerte in den Figuren wurden mit der WinDaq-Datenerfassungssoftware verknüpftNOISE REDUZIERUNG DURCH BILDVERWERTUNG Das Bildrauschen kann den Detaillierungsgrad in Ihren Digital - oder Filmfotos beeinträchtigen, so dass dieses Rauschen das endgültige Bild oder den Druck erheblich verkürzt. Das Problem ist, dass die meisten Techniken zu reduzieren oder zu entfernen Rauschen immer am Ende Erweichung des Bildes als gut. Eine gewisse Erweichung kann für Bilder, die hauptsächlich aus glattem Wasser oder Himmel bestehen, akzeptabel sein, aber das Laub in der Landschaft kann mit sogar konservativen Versuchen, das Geräusch zu reduzieren, leiden. Dieser Abschnitt vergleicht ein paar gemeinsame Methoden zur Rauschunterdrückung, und führt auch eine alternative Technik: Mittelung mehrerer Belichtungen, um Rauschen zu reduzieren. Bild-Mittelung ist in High-End-Astrofotografie üblich, ist aber wohl für andere Arten von Low-Light und Nachtfotografie unterbelegt. Die Mittelung hat die Macht, das Rauschen zu reduzieren, ohne Details zu kompromittieren, da es tatsächlich das Signal-Rausch-Verhältnis (SNR) Ihres Bildes erhöht. Ein zusätzlicher Bonus ist, dass Mittelung kann auch die Bittiefe Ihres Bildes über das hinaus, was mit einem einzigen Bild möglich wäre. Die Mittelung kann auch besonders nützlich für diejenigen sein, die die Glätte von ISO 100 imitieren möchten, deren Kamera jedoch nur auf ISO 200 sinkt (wie die meisten digitalen Spiegelreflexkameras). Bild-Mittelung arbeitet auf der Annahme, dass das Rauschen in Ihrem Bild ist wirklich zufällig. Auf diese Weise werden zufällige Schwankungen oberhalb und unterhalb der tatsächlichen Bilddaten allmählich ausgeglichen, wenn man immer mehr Bilder misst. Wenn Sie zwei Aufnahmen eines glatten grauen Flecks unter Verwendung derselben Kameraeinstellungen und unter identischen Bedingungen (Temperatur, Beleuchtung usw.) machen würden, würden Sie Bilder erhalten, die denen ähnlich sind, die auf der linken Seite gezeigt sind. Das obige Diagramm stellt Helligkeitsschwankungen entlang dünner blauer und roter Streifen von Pixeln in den oberen bzw. unteren Bildern dar. Die gestrichelte waagerechte Linie stellt den Durchschnitt dar, oder was dieses Diagramm aussieht, wenn es kein Rauschen gab. Beachten Sie, dass jede der roten und blauen Linien eindeutig über und unter der gestrichelten Linie fluktuiert. Wenn wir den Pixelwert an jeder Stelle entlang dieser Linie nehmen und ihn mit dem Wert für das Pixel an der gleichen Stelle für das andere Bild mitteln würden, würde die Helligkeitsveränderung wie folgt verringert werden: Obwohl der Durchschnitt der beiden noch Schwankt ober - und unterhalb des Mittelwertes die maximale Abweichung stark. Optisch hat dies den Effekt, den Patch auf der linken Seite erscheinen glatter. Zwei gemittelte Bilder erzeugen gewöhnlich Rauschen, die mit einer ISO-Einstellung vergleichbar sind, die halb so empfindlich ist, so dass zwei gemittelte Bilder, die bei ISO 400 aufgenommen wurden, mit einem Bild, das bei ISO 200 aufgenommen wurde, vergleichbar sind, und so weiter. Im Allgemeinen sinkt die Größe der Rauschschwankung um die Quadratwurzel der Anzahl der gemittelten Bilder, so dass Sie durchschnittlich 4 Bilder benötigen, um die Größe in der Hälfte zu schneiden. NOISE-DETAIL-VERGLEICH Das nächste Beispiel illustriert die Effektivität der Bildmittelung in einem realen Beispiel. Das folgende Foto wurde bei ISO 1600 auf der Canon EOS 300D Digital Rebel aufgenommen und leidet an übermäßigem Rauschen.


No comments:

Post a Comment